Viscosities of Solutions of Interest for Studies of Absorption Processes

G. Vázquez Uña,* F. Chenlo Romero, E. Álvarez Dacosta, R. Moreira Martínez, and P. Pardo Calvo

Chemical Engineering Department, University of Santiago de Compostela, 15706 Santiago, Spain

We report the viscosities of solutions of glycerin, sucrose, glucose, or fructose in water or in 0.5 M sodium carbonate + 0.5 M sodium bicarbonate buffer at concentrations from 0 to 150 g·L⁻¹ and temperatures from 288.1 to 323.1 K. An equation gave the dependence of kinematic viscosity on concentration and temperature with a deviation of less than 1.2%.

Introduction

The rate at which gas-liquid absorption processes occur depends on mass transfer coefficients, interfacial areas, and, if the gas reacts chemically with the liquid, the corresponding kinetic constants. Calculation or determination of these variables requires knowledge of certain physical properties: the density, surface tension, and viscosity of the liquid phase and the diffusivity and solubility of the gas in the liquid. Danckwerts' method for determining interfacial area, for example, which is based on the dissolution of CO_2 in buffer solutions (often sodium carbonate + bicarbonate buffers), assumes knowledge of the viscosity of these solutions (1). In our previous studies (2, 3) of the influence of viscosity on gas-liquid absorption, we have controlled this variable by addition of sugars or glycerin. We found, however, that neither published experimental data nor the scope of existing models for the viscosities of sugar or glycerin solutions as a function of temperature and concentration was sufficient for our needs (4, 5). As a necessary preliminary to further work on mass transfer, we therefore undertook the experimental determination of the kinematic viscosities of the solutions of interest over the appropriate ranges of temperature and concentration. This paper reports our measurements, which were performed with greater accuracy than would normally be required for application to mass transfer.

Experimental Section

Solutions of glycerin, sucrose, glucose, or fructose in water or 0.5 M sodium carbonate + 0.5 M sodium bicarbonate buffer (concentrations at 298.1 K) were made up at concentrations ranging from 0 to 150 g·L⁻¹ at 25 g·L⁻¹ intervals, and their viscosities measured at temperatures ranging from 288.1 to 323.1 K at 5 K intervals. Sucrose, glucose anhydride, and fructose (all>99.95% pure) and glycerin (>99.5% pure) were Merck products and were desiccated to constant mass prior to use. Sodium carbonate and sodium bicarbonate, Probus products, were both >99.9% pure; the carbonate was desiccated prior to use to remove any bicarbonate. Water was distilled and degassed. Solutions were made up with known masses of solutes and solvent, and in what follows their concentrations are expressed as mass fractions. All solutions were filtered before use.

Kinematic viscosities were calculated from the transit time of the liquid meniscus through a capillary, measured to a precision of ± 0.01 s in a Schott-Geräte AVS 350 automatic Ubbelohde viscosimeter. Temperature was thermostated to within ± 0.02 K in a bath. Several determinations were carried out for each experimental condition; in no case did the maximum deviation from the mean exceed 0.4%. Table 1. Kinematic Viscosities v of Water and 0.5 M Sodium Carbonate + 0.5 M Sodium Bicarbonate Buffer at Various Temperatures

T/K	$10^6 \nu / (m^2 \cdot s^{-1})$	T/K	$10^6 \nu / (m^2 \cdot s^{-1})$
	Wa	iter	
288.1	1.138	308.1	0.722
293.1	1.001	313.1	0.655
298.1	0.892	318.1	0.595
303.1	0.799	323.1	0.546
0.5 M	Sodium Carbonate +	0.5 M Sodiur	n Bicarbonate
288.1	1.551	308.1	0.980
293.1	1.361	313.1	0.885
298.1	1.211	318.1	0.808
303.1	1 091	323.1	0 743

Table 2. Kinematic Viscosities of Aqueous Solutions of Sucrose at Various Mass Fractions w and Temperatures T

	$10^{6}\nu/(m^{2}-s^{-1})$					
T/K	w = 0.0269	<i>w</i> = 0.0528	w = 0.0749	w = 0.0981	w = 0.1207	<i>w</i> = 0.1428
288.1	1.211	1.298	1.386	1.474	1.582	1.723
293.1	1.065	1.143	1.212	1.289	1.383	1.494
298.1	0.946	1.021	1.076	1.141	1.222	1.317
303.1	0.848	0.909	0.959	1.018	1.086	1.170
308.1	0.766	0.821	0.865	0.914	0.975	1.045
313.1	0.697	0.745	0.784	0.828	0.880	0.941
318.1	0.637	0.678	0.713	0.754	0.801	0.857
323.1	0.587	0.622	0.657	0.689	0.731	0.780

Table 3. Kinematic Viscosities of Aqueous Solutions of Glucose at Various Mass Fractions w and Temperatures T

	$10^{6}\nu/(m^{2}\cdot s^{-1})$						
T/K	w = 0.0249	w = 0.0493	w = 0.0733	w = 0.0969	w = 0.1209	w = 0.1439	
288.1	1.207	1.291	1.362	1.451	1.559	1.688	
293.1	1.063	1.132	1.190	1.268	1.361	1.468	
298.1	0.945	1.003	1.054	1.122	1.199	1.290	
303.1	0.846	0.896	0.938	1.000	1.067	1.145	
308.1	0.764	0.810	0.846	0.899	0.960	1.024	
313.1	0.695	0.734	0.767	0.812	0.866	0.925	
318.1	0.635	0.670	0.701	0.742	0.787	0.836	
323.1	0.584	0.613	0.643	0.680	0.718	0.763	

Results

The measured kinematic viscosities of degassed distilled water at the working temperatures, all of which were within 0.2% of published values (4), are listed in Table 1 together with analogous measurements for 0.5 M sodium carbonate + 0.5 M sodium bicarbonate buffer. Tables 2–5 list the measured viscosities of solutions of sucrose, glucose, fructose and glycerin in water (all values measured at 293.1 K are within 1% of the published data (4)), and Tables 6–9 list the analogous data for the same solutes in 0.5 M sodium carbonate + 0.5 M sodium bicarbonate buffer.

Table 4. Kinematic Viscosities of Aqueous Solutions of Fructose at Various Mass Fractions w and Temperatures T

	$10^{8}\nu/(m^{2}\cdot s^{-1})$					
<i>T</i> /K	w = 0.0249	w = 0.0495	w = 0.0733	w = 0.0967	w = 0.1197	w = 0.1421
288.1	1.211	1.284	1.341	1.463	1.562	1.653
293.1	1.067	1.125	1.175	1.258	1.361	1.442
298.1	0.946	1.006	1.042	1.113	1.211	1.268
303.1	0.848	0.886	0.930	0.991	1.073	1.124
308.1	0.766	0.807	0.839	0.892	0.949	1.078
313.1	0.696	0.729	0.760	0.807	0.858	0.921
318.1	0.637	0.667	0.694	0.733	0.780	0.831
323.1	0.585	0.610	0.635	0.670	0.710	0.760

Table 5. Kinematic Viscosities of Aqueous Solutions of Glycerin at Various Mass Fractions w and Temperatures T

	$10^{6}\nu/(m^{2}\cdot s^{-1})$						
<i>T</i> /K	w = 0.0253	w = 0.0532	<i>w</i> = 0.0748	w = 0.0986	w = 0.1224	<i>w</i> = 0.1486	
288.1	1.232	1.295	1.378	1.455	1.565	1.672	
293.1	1.078	1.137	1.204	1.272	1.362	1.455	
298.1	0.960	1.009	1.066	1.126	1.199	1.284	
303.1	0.865	0.902	0.954	1.004	1.067	1.136	
308.1	0.778	0.812	0.859	0.902	0.958	1.018	
313.1	0.706	0.737	0.777	0.816	0.865	0.917	
318.1	0.642	0.671	0.709	0.743	0.785	0.828	
323.1	0.586	0.618	0.650	0.679	0.720	0.757	

Table 6. Kinematic Viscosities of Solutions of Sucrose in 0.5 M Sodium Carbonate + 0.5 M Sodium Bicarbonate Buffer at Various Mass Fractions w and Temperatures T

	$10^{6}\nu/(m^{2}\cdot s^{-1})$						
<i>T</i> /K	w = 0.0231	<i>w</i> = 0.0458	w = 0.0685	w = 0.0900	<i>w</i> = 0.1116	w = 0.1328	
288.1	1.675	1.817	1.967	2.146	2.350	2.584	
293.1	1.466	1.587	1.710	1.865	2.031	2.233	
298.1	1.297	1.404	1.514	1.639	1.783	1.948	
303.1	1.158	1.255	1.348	1.452	1.572	1.711	
308.1	1.041	1.121	1.199	1.301	1.402	1.523	
313.1	0.946	1.014	1.083	1.168	1.262	1.360	
318.1	0.865	0.924	0.982	1.059	1.139	1.227	
323.1	0.789	0.845	0.892	0.965	1.035	1.112	

Table 7. Kinematic Viscosities of Solutions of Glucose in 0.5 M Sodium Carbonate + 0.5 M Sodium Bicarbonate Buffer at Various Mass Fractions w and Temperatures T

	$10^6 \nu / (m^2 \cdot s^{-1})$						
<i>T</i> /K	w = 0.0231	<i>w</i> = 0.0458	w = 0.0681	w = 0.0900	<i>w</i> = 0.1116	w = 0.1370	
288.1	1.688	1.815	1.958	2.129	2.336	2.596	
293.1	1.473	1.584	1.711	1.850	2.015	2.233	
298.1	1.315	1.401	1.505	1.622	1.761	1.945	
303.1	1.179	1.247	1.341	1.445	1.557	1.710	
308.1	1.060	1.122	1.201	1.290	1.386	1.518	
313.1	0.959	1.014	1.081	1.167	1.244	1.358	
318.1	0.874	0.922	0.981	1.054	1.125	1.222	
323.1	0.802	0.844	0.896	0.959	1.027	1.108	

The Cornelissen–Waterman equation for the dependence of kinematic viscosity ν on absolute temperature T at constant solute concentration (6),

$$\nu = A \mathrm{e}^{B/T^m} \tag{1}$$

was fitted to the experimental data (with deviations of less than 0.2%) by the Nelder-Mead method, which gave a value of 3 for *m* when the whole data set was considered. The equations so obtained for water and buffer with no solute are shown in Tables 10 and 11, respectively.

The variation of viscosity with solute concentration (mass fraction, w) was expressed by an empirical equation of the

Table 8. Kinematic Viscosities of Solutions of Fructose in 0.5 M Sodium Carbonate + 0.5 M Sodium Bicarbonate Buffer at Various Mass Fractions w and Temperatures T

	$10^6 \nu / (m^2 \cdot s^{-1})$						
T/\mathbf{K}	w = 0.0231	<i>w</i> = 0.0458	w = 0.0681	w = 0.0899	<i>w</i> = 0.1115	w = 0.1329	
288.1	1.677	1.815	1.967	2.123	2.287	2.491	
293.1 298.1	1.469	1.588	1.719 1.515	1.842 1.619	1.978 1.735	2.158 1.890	
303.1 308.1	$1.173 \\ 1.058$	1.255 1.127	1.343 1 207	1.435 1.284	1.534 1.370	1.652	
313.1	0.962	1.023	1.090	1.156	1.232	1.307	
318.1 323.1	0.878 0.805	$0.930 \\ 0.852$	0.991 0.904	1.049 0.956	1.114 1.013	1.177 1.065	

Table 9. Kinematic Viscosities of Solutions of Glycerin in 0.5 M Sodium Carbonate + 0.5 M Sodium Bicarbonate Buffer at Various Mass Fractions w and Temperatures T

	$10^6 \nu / (m^2 \cdot s^{-1})$						
T/\mathbf{K}	w = 0.0299	<i>w</i> = 0.0461	w = 0.0692	w = 0.0916	w = 0.1133	<i>w</i> = 0.1359	
288.1	1.652	1.804	1.922	2.080	2.278	2.414	
293.1	1.453	1.576	1.675	1.811	1.962	2.082	
298.1	1.285	1.383	1.489	1.584	1.725	1.822	
303.1	1.149	1.241	1.311	1.412	1.525	1.627	
308.1	1.034	1.111	1.175	1.264	1.350	1.446	
313.1	0.938	1.004	1.062	1.138	1.212	1.283	
318.1	0.856	0.913	0.960	1.025	1.074	1.162	
323.1	0.785	0.834	0.876	0.934	0.963	1.058	

Table 10. Parameters of Equation 3 for the Temperature and Mass Fraction Dependence of the Kinematic Viscosities of Aqueous Solutions of Various Sugars and Glycerin⁴

solution	$F \times 10^{7}/(\text{m}^2 \cdot \text{s}^{-1})$	$G \times 10^{-7}/\mathrm{K}^3$
sucrose	2.6170	7.6336
glucose	2.2018	7.8860
fructose	2.1219	7.9216
glycerine	1.7933	8.4196

 $^{a} \nu_{0} = \nu_{\text{H}_{2}\text{O}}/(\text{m}^{2}\cdot\text{s}^{-1}) = 9.7734 \times 10^{-8}\text{e}^{5.8662 \times 10^{7}/(T/\text{K})^{3}}.$

Table 11. Parameters of Equation 3 for the Temperature and Concentration Dependence of the Kinematic Viscosities of Solutions of Various Sugars and Glycerin in 0.5 M Sodium Carbonate + 0.5 M Sodium Bicarbonate Buffer⁴

solution	$F \times 10^{7}/(m^{2} \cdot s^{-1})$	$G \times 10^{-7}/{ m K^3}$
sucrose + buffer	3.7453	8.4059
glucose + buffer	3.2645	8.6466
fructose + buffer	2.7940	8.8937
glycerine + buffer	2.7446	8.7379

 $^{a} \nu_{0} = \nu_{\text{buffer}} / (\text{m}^{2} \cdot \text{s}^{-1}) = 12.5477 \times 10^{-8} \text{e}^{6.0084 \times 10^{7} / (T/\text{K})^{3}}.$

form

$$\nu = D + Ew^n \tag{2}$$

where n = 1.25 was optimized using the whole data set, and the standard deviations of the fits were less than 1%.

The dependence of kinematic viscosity on both temperature and solute concentration was modeled by treating D and Ein eq 2 as functions of T of the same form as eq 1:

$$\nu = \nu_0 + F e^{G/T^m} w^n \tag{3}$$

where ν_0 is the kinematic viscosity in the absence of solute (given, for water and sodium carbonate + bicarbonate buffer as solvents, by the functions shown in Tables 10 and 11, respectively), *m* and *n* are taken to have the values 3 and 1.25 determined for eqs 1 and 2, and the parameters *F* and *G*, optimized by the Nelder-Mead method, are listed for each

system in Tables 10 and 11. Equation 3 fitted the measurements to within 1.2%.

In conclusion, the results reported here allow the calculation of the kinematic viscosities of aqueous solutions commonly employed in laboratory studies of gas-liquid absorption. As far as we are aware, there has been no previous report of systematic determination of such data, the few scattered values that have been published hitherto having been obtained by a variety of different methods in various absorption studies.

Literature Cited

(1) Danckwerts, P. V. Gas-Liquid Reactions, McGraw-Hill Book Co.: New York, 1970.

- (2) Vázquez, G.; Antorrena, G.; Chenlo, F.; Paleo, F. An. Quim. 1988, 84, 398.
- (3) Vázquez, G.; Antorrena, G.; Chenlo, F.; Paleo, F. Chem. Biochem. Eng. Q. 1989, 3, 7.
- (4) Weast, R. G. Handbook of Chemistry and Physics, 67th ed.; Chemical Rubber Publishing Co.: Cleveland, 1987.
 (5) Reid, R. C.; Prausnitz J. M.; Poling, B. E. The properties of gases and liquids, 4th ed.; McGraw-Hill Book Co.: New York, 1987.
- (6) Cornelissen, J.; Waterman, H. I. Chem. Eng. Sci. 1955, 4, 238.

Received for review March 25, 1993. Accepted August 6, 1993. This work was partly financed by the Spanish DGICYT (Grant PB89-0489).

• Abstract published in Advance ACS Abstracts, November 1, 1993.